Copyright @ Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.

Motion, Forces, Note-taking Worksheet

Section 1 Motion

- A. _____ involves distance and time.
 - 1. ______ speed—calculated as total distance traveled divided by travel time
 - 2. ______ speed—an object's speed at a particular moment
 - 3. When instantaneous speed does not change, an object is moving at _____ speed; average speed and instantaneous speed are the _____ in this situation.
 - 4. Distance can be calculated if an object is moving at constant speed over a particular time period; total distance traveled equals ______ times time.
- **B.** Speed and direction of motion is _____.
- **C.** _______ is the change in velocity divided by the time needed for the change to occur.
 - 1. Acceleration can be calculated using a formula: acceleration equals change in
 - divided by time.
 - 2. Acceleration can be shown on a speed-time graph.

Section 2 Newton's Laws of Motion

- **A.** ______a push or a pull
 - 1. When a force acts on an object, it ______ the object's acceleration.
 - 2. Two or more forces that cancel each other out are ______ forces.
 - 3. Two or more forces that do not cancel each other out are ______ forces.
 - **4.** The combination of all forces acting on an object is the ______ force.
- **B.** Newton's ______explain how forces cause motion
 - 1. Newton's first law—a moving object moves in a straight line with speed unless a force acts on it.
 - **a.** ______a force that resists movement between two surfaces in contact
 - **b.** An object's tendency to resist a change in motion is _____; the more mass an object has, the greater its inertia.

Date and Simple Machines

Class

Date

Note-taking Worksheet (continued)

- Newton's second law—if an object is acted upon by a ______ force, the change in velocity will be in the direction of the ______ force; acceleration can be calculated as *acceleration equals net force divided by mass.*
- 3. Newton's third law—forces always occur in equal but ______ pairs; the equal and opposite forces act on different objects, so they are not balanced forces.

Section 3 Work and Simple Machines

A. _____

Meeting Individual Needs

- 1. Occurs when a force causes an object to move in the same direction that the force is applied
- 2. Calculated as *work equals _______ times distance*
- B. A _____ machine uses only one movement; a _____ machine is a combination of simple machines.
 - 1. Mechanical ________ is the number of times force is multiplied; calculated as *mechanical advantage equals resistance force divided by effort force.*
 - 2. An ______ machine would experience no friction, so work in would equal work out.
 - 3. _____ machines do experience friction, so work out is always less than work in.
- C. _____an object with a groove, like a wheel, with a rope or chain running

through the groove; changes the direction of the effort force

D. A lever is a rod or plank that pivots about a fixed point called the ______

1. The fulcrum is between the effort force and the resistance force in a

_____lever.

- 2. In a ______ lever, the resistance force is between the effort force and the fulcrum.
- 3. The effort force is between the resistance force and the fulcrum in a

_____ lever

- 4. The ______ and _____ provide a mechanical advantage greater than one.
- E. An ______ or ramp allows an object to be lifted over a greater distance

using less force.

- 1. A ______ is a moving inclined plane with one or two sloping surfaces.
- 2. ______inclined plane wrapped around a post
- 32 Motion, Forces, and Simple Machines